
Popcorn Linux: System Software for
Emerging Heterogeneous Platforms

Rob Lyerly (rlyerly@vt.edu)
Systems Software Research Group at Virginia Tech

ssrg.ece.vt.edu

mailto:rlyerly@vt.edu

2

Introduction

Free-lunch for the programmer! Free-lunch is over!

1
1

0
0

1
0

0
0

0
1

0
0

0
0

0
0

transistor count (x1000) clock frequency (MHz)

Each image is copyright of the respective company or manufacturer. Images used here for educational purposes.

3

Introduction

• Not only heterogeneous at the chip level –
datacenters incorporating heterogeneous ISAs

Each image is copyright of the respective company or manufacturer. Images used here for educational purposes.

4

Introduction

• On the horizon – fully general purpose, OS-capable, heterogeneous-ISA chip
multiprocessors & rack-scale systems

PCIe, Ethernet, Infiniband, etc.

ARMv8x86-64

bus

shared memory

cache cache cache

5

Why Heterogeneous ISAs?

• Rack-level – vastly different performance/efficiency designs

Cavium ThunderX
• ARMv8, 64-bit
• 48 cores per socket
• 2GHz per core
• L1: 78KB I$, 32KB D$ per core
• L2: 16MB (shared)
• 120W TDP

Intel Xeon E5-1650v2
• x86-64, 64-bit
• 6 cores/12 threads per socket
• 3.5GHz base, 3.9GHz turbo boost
• L1: 32KB I$, 32KB D$ per core
• L2: 256KB per-core
• L3: 12MB (shared)
• 130W TDP

6

Why Heterogeneous ISAs?

• Smart consolidation, load balancing for performance & energy gains
• ISA/Machine affinity:

– Program phases illustration: PARSEC blackscholes native input

96 cores @2Ghz 6 cores @3.2Ghz

7

Why Heterogeneous ISAs?
Reduced Instruction Set Computer (RISC)

Complex Instruction Set Computer (CISC)

Source
Code

A
R

M
 C

o
m

p
ilerBinary Emitter

Optimization

Language Parser

x8
6

 C
o

m
p

ilerBinary Emitter

Optimization

Language Parser

8

Why Heterogeneous ISAs?

• Chip-level – micro-architectural heterogeneity is already here!

Cache (big cores)

Big Cores
1.8-2.5 GHz

Cache (little cores)

Little Cores
1.0-1.5 GHz

ARM big.LITTLE, e.g.,

iPhone 8/X Galaxy S8

Compute capacity
(Performance)

Power

9

Why Heterogeneous ISAs?

• The case for heterogeneous-ISA multicores

“Harnessing ISA Diversity: Design of a Heterogeneous-ISA Chip
Multiprocessor,” A. Venkat and D. M. Tullsen, ISCA 2014.

Single thread performance for
different area budgets

Core Area (mm2)

Smaller the core area, greater # of
cores can be placed on the silicon

• ARM’s thumb
• x86_64
• Alpha

• big Alpha
• medium Alpha
• little Alpha

• Alpha

Performance of bzip2's two
different phases for different

peak power budgets

P
h

as
e

 1
P

h
as

e
 2

10

Heterogeneous-ISA Execution

• Big questions for programming heterogeneous-ISA
systems
1. What is the programming language/model?

2. How do I abstract away ISA differences, e.g., code, data layout?

3. How is memory accessed/shared across distinct memory regions?

11

Heterogeneous-ISA Execution

Message Passing Interface (MPI)
+ High performance
‒ Complex code development/refactoring
‒ Hardcoded application partitions

Partition
A

Partition
CPartition B

ISA A

ISA B

ISA Virtualization
• Managed languages, e.g., Java

‒ Rewrite application from scratch
‒ Performance overheads

• Dynamic binary translation, e.g., QEMU
+ Run unmodified binaries
‒ Order of magnitude slowdown

Application

Ex
tr

a
la

ye
r

VM VM VM

OS OS OS

ISA A ISA B ISA C

12

Heterogeneous-ISA Execution

• Using shared memory gives sanity back to the
developer!
– Well understood programming model – POSIX shared memory (30

years), OpenMP (20 years)

– One common memory region – no data marshaling!

– Higher programmability versus offloading!

– High performance – no language or system VMs necessary!

– Flexible platform-wide resource management!

Benchmark CG EP FT IS MG

OpenMP LOC 1150 297 1106 1108 1481

MPI modified 98% 44% 98% 46% 97%

OpenMP and
MPI version of
NASA NPB

13

Popcorn Linux

• System software stack for migrating compiled
applications between heterogeneous-ISA servers
– Replicated-kernel OS for thread and data migration

– Compiler for creating a mostly-common virtual address space,
generating metadata about ISA-specific execution state

– Runtime for transforming ISA-specific execution state

• Allow developers to write shared memory
compiled applications and leverage
heterogeneity
– Legacy code works too!

14

Popcorn Linux: Operating System

• Multiple kernels provides single system image (SSI)
allowing threads to migrate freely between nodes

15

Popcorn Linux: Operating System

• Thread migration & heterogeneous continuations
– Threads invoke migration via syscall

– Kernels cooperate to migrate user-space thread contexts between ISAs

– Kernel maps user-space PC, SP and FBP registers between ISAs

• On-demand page migration
– Migrate memory pages between kernels when accessed by application

• Intercept & redirect the page fault handler

• Kept coherent using MSI-like protocol

– Memory region aliasing for ISA-specific sections (e.g., .text)

16

Popcorn Linux: Operating System

VMA
Map

Kernel 2Kernel 1

Single System ImageOriginal thread Remote threadVMA
Map

str x1, [sp,#0xbeef]

Page fault at sp + 0xbeef

send page containing
sp + 0xbeef

Migrate to ARM

.
t
e
x
t

(x
8

6
)

.
t
e
x
t

(A
R

M
)

Page fault at @str

17

Popcorn Linux: Compiler

Multi-ISA Binary

• Compiler toolchain builds
multi-ISA binaries
– Create mostly-common virtual

address space (data, code, heap)

• Pointers are valid across all ISAs

– Dynamically transform thread
execution state (stack, registers)
between ISA-specific formats at
migration time

– Instrument generated code with
migration points

C/C++
Source

Data x86_64
Code

ARM64
Code

RISCV
Code

Transform
Metadata

P
o

p
co

rn
 To

o
lch

ainPost-Processing

Link

Compile

18

Popcorn Linux: Compiler

• Built on top of clang/LLVM
– clang/LLVM 3.7.1, GNU gold 2.27, musl-libc 1.1.18

– Custom address space alignment, post-processing tools

– State transformation/migration libraries

19

Popcorn Linux: Compiler

• Insert migration points into code
– Can only transform stack at equivalence points

• Direct mapping of execution state between ISA-specific formats

– Scheduler cannot migrate threads at arbitrary points, must signal
threads to initiate migration process

No

Migrate
thread?

Scheduler

void foo() {

migration_check();

… (execute foo) …

migration_check();

}

Thread

Yes
Transform

execution state
& migrate

20

Popcorn Linux: Runtime

• Transform registers & stack between ISA-specific
formats

• Runtime transforms state before migration
– Attaches to a thread’s registers/stack

– Reads compiler metadata describing function activation layouts

– Rewrites stack in its entirety from source to destination ISA format

• After transformation, runtime invokes migration
– Passes destination ISA’s register state and stack to OS’s thread

migration service

21

Popcorn Linux: Runtime

3

2

1

baz() call frame

bar() call frame

foo() call frame

Source Destination

Function: baz
Call site: 10

Call frame size: 32 bytes
Return address: 0x410548

Function: baz
Call site: 10

Call frame size: 48 bytes
Return address: 0x410532

Top of Stack

Function: bar
Call site: 37

Call frame size: 16 bytes
Return address: 0x410204

Function: bar
Call site: 37

Call frame size: 32 bytes
Return address: 0x410198

Function: foo
Call site: 193

Call frame size: 32 bytes
Return address: 0x412820

Function: foo
Call site: 193

Call frame size: 40 bytes
Return address: 0x412700

22

Popcorn Linux: Runtime

Function: bar
Call site: 37

Call frame size: 32 bytes
Return address: 0x410198

Function: foo
Call site: 193

Call frame size: 40 bytes
Return address: 0x412700

23

Evaluation

• APM X-Gene 1
– 8 cores @ 2.4GHz

– 8MB LLC, 32GB RAM

– 40nm process, 50W TDP
• Measured via on-board sensor

• Estimated power consumption
scaled to 22nm using McPAT

• Intel Xeon E5-1650v2
– 6 cores @ 3.5GHz (3.9GHz turbo)

• Hyperthreading disabled

– 12MB LLC, 16GB RAM

– 22nm process, 130W TDP
• Measured via RAPL

PCIe Gen 3

Dolphin PXH810
PCIe point-to-point connection, 64Gbps

24

Evaluation

• Load balance across architectures
– Periodic workload – each set consists of 5 waves of up to 14 jobs

• Uniformly sampled from NAS Parallel Benchmarks (NPB), class A, B & C

• Waves arrive every 60-240 seconds

– Comparison against 2 x Intel Xeon E5-1650v2 w/o migration

25

Results

30%

66%

11%

26

Summary

• Initial working prototype on 2 node ARM64 & x86-64

• Load balancing across high-performance/energy-
efficient processors enabled energy savings versus
homogeneous setup

27

Ongoing Research: Rack-Scale

• Centralized page management for implementation feasibility
– Track the ownership for each page at the origin

– Remote threads request missing pages to the origin

– The origin handles the requests accordingly

• Model the simple RMI cache coherent protocol
– Read-Modify Invalidate

– Read replicates a page

– Write gets exclusive access to the page

• Invalidates the page from other nodes

Local

Shared Exclusive

Read

Write

Read

Write

Read

Write

28

Ongoing Research: Rack-Scale

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

OriginRemote 1 Remote 2

Read

Read

R

Read

RW

Write
How do you scale page migration
across multiple nodes with many

concurrent & potentially
contending accesses?

29

Ongoing Research: Rack-Scale

• Reduce number of page migrations
– Co-locate threads with needed data – graph partitioning problem

– Invert mechanism – migrate threads to data

– Change work ↔ data mapping

Node A Node B

30

New Project: Secure Popcorn

Impact: 1.5 billion user accounts

Impact: 145 million users compromised

Impact: Personal information of 22 million

current and former federal employees

Impact: Possibly 40 million employee
records stolen

90% of today’s attacks utilize ROP

31

New Project: Secure Popcorn

lea -0x78(%ebp),%eax
mov %eax,0x8(%esp)
call
d92e0
<memcpy>
….
ret
….
mov %edx,--‐0x94(%ebp)
movl $0x3,(%esp)
mov %eax,0x4(%esp)
ret
….
….
xor %eax,%eax
ret
….
….
pop %ebx
ret

Read-only text section

0x20d1b0
0x17049d
0x10ad
0x80436a
0xbfff8a40
0x74636570

Stack

Caller frame
ends here

Gadget

32

New Project: Secure Popcorn

lea -0x78(%ebp),%eax
mov %eax,0x8(%esp)
call
d92e0
<memcpy>
….
ret
….
mov %edx,--‐0x94(%ebp)
movl $0x3,(%esp)
mov %eax,0x4(%esp)
ret
….
….
xor %eax,%eax
ret
….
….
pop %ebx
ret

Read-only text section

0x20d1b0
0x17049d
0x10ad
0x80436a
0xbfff8a40
0x74636570

Stack

Caller frame
ends here

Gadget

Exploit buffer overflow

0x870f65
0x87098d
0xbfff8076
0x870234
0x432a123
0x65708ad6

33

New Project: Secure Popcorn

lea -0x78(%ebp),%eax
mov %eax,0x8(%esp)
call
d92e0
<memcpy>
….
ret
….
mov %edx,--‐0x94(%ebp)
movl $0x3,(%esp)
mov %eax,0x4(%esp)
ret
….
….
xor %eax,%eax
ret
….
….
pop %ebx
ret

Read-only text section

Stack

Return to gadget 1

0x870f65
0x87098d
0xbfff8076
0x870234
0x432a123
0x65708ad6

Dynamic execution stream

pop %ebx

34

New Project: Secure Popcorn

lea -0x78(%ebp),%eax
mov %eax,0x8(%esp)
call
d92e0
<memcpy>
….
ret
….
mov %edx,--‐0x94(%ebp)
movl $0x3,(%esp)
mov %eax,0x4(%esp)
ret
….
….
xor %eax,%eax
ret
….
….
pop %ebx
ret

Read-only text section

Stack

Return to gadget 2

0x870f65
0x87098d
0xbfff8076
0x870234
0x432a123
0x65708ad6

Dynamic execution stream

pop %ebx

xor %eax,%eax

35

New Project: Secure Popcorn

lea -0x78(%ebp),%eax
mov %eax,0x8(%esp)
call
d92e0
<memcpy>
….
ret
….
mov %edx,--‐0x94(%ebp)
movl $0x3,(%esp)
mov %eax,0x4(%esp)
ret
….
….
xor %eax,%eax
ret
….
….
pop %ebx
ret

Read-only text section

Stack

Return to gadget 3

0x870f65
0x87098d
0xbfff8076
0x870234
0x432a123
0x65708ad6

Dynamic execution stream

pop %ebx

xor %eax,%eax

mov %edx,--‐0x94(%ebp)
movl $0x3,(%esp)
mov %eax,0x4(%esp)

36

New Project: Secure Popcorn

lea -0x78(%ebp),%eax
mov %eax,0x8(%esp)
call
d92e0
<memcpy>
….
ret
….
mov %edx,--‐0x94(%ebp)
movl $0x3,(%esp)
mov %eax,0x4(%esp)
ret
….
….
xor %eax,%eax
ret
….
….
pop %ebx
ret

Read-only text section

Stack

Return to gadget 3

0x870f65
0x87098d
0xbfff8076
0x870234
0x432a123
0x65708ad6

Dynamic execution stream

pop %ebx

xor %eax,%eax

mov %edx,--‐0x94(%ebp)
movl $0x3,(%esp)
mov %eax,0x4(%esp)ROP is Turing-complete given sufficiently large binary

37

New Project: Secure Popcorn

Row hammer attack

38

New Project: Secure Popcorn

Activating a adjacent row too often

causes “disturbance errors”

One bit-flip error

NaCl exploit, kernel exploit

39

New Project: Secure Popcorn

• Runtime ISA migration
– Move application threads to physically different machine with different

ISA
– Mitigate memory crosstalk attack by running on a physical different

machine

• Runtime ISA randomization
– Upon migration, randomize code and program status
– Thwart attacker’s knowledge by changing program code and data

• Swift continuous code re-randomization
– Continuously re-randomize program code with very low overhead
– Introduce real-time deadline (one re-randomization cycle) to attackers

• Runtime integrity check (CFI & DFI)
– Check integrity of code and data at ISA boundary
– Make low-overhead integrity check possible

40

New Project: Secure Popcorn

ARM affinity thread

x86 affinity thread
Bundle 0

ARMv8

Xeon

Xeon
Phi

PCIe

Application

Bundle 2

ARMv8

Xeon

Xeon
Phi

Bundle 3

ARMv8

Xeon

Xeon
Phi

Bundle 1

ARMv8

Xeon

Xeon
Phi

InfiniBand interconnect

Relocating threads crossing
the bundle boundary

Relocating threads crossing
the ISA boundary

01001001100111011010110110

Unleash program execution from a machine
Mitigate memory/cache crosstalk attack

Attacker gains
control, executes
crosstalk attack

41

New Project: Secure Popcorn

lea -0x78(%ebp),%eax
mov %eax,0x8(%esp)
call
d92e0
<memcpy>
….
ret
….
mov %edx,--‐0x94(%ebp)
movl $0x3,(%esp)
mov %eax,0x4(%esp)
ret
….
….
xor %eax,%eax
ret
….
….
pop %ebx
ret

Read-only text section

Stack

Return to gadget 3

0x870f65
0x87098d
0xbfff8076
0x870234
0x432a123
0x65708ad6

Migrate to new ISA when
intrusion detected or with
some periodic frequency

ldr s1, [x9]
orr x9, xzr, #0x4
add x8, x8, x9
str s0, [x8]

Gadget returns to garbage!

42

Conclusion

• Heterogeneity is permeating all corners of computer
architecture

• Popcorn Linux gives developers a better way to program
heterogeneous-ISA systems – shared memory!
– A compiler which builds multi-ISA binaries

– An OS which enables cross-ISA thread and data migration

– A state transformation runtime which converts ISA-specific data

• Allows developers to transparently take advantage of
heterogeneity
– Performance

– Power/energy efficiency

– Security

43

More Information

• Popcorn Linux is open source and available online at
http://popcornlinux.org

• This work is supported in part by ONR under grants
N00014-13-1-0317 and N00014-16-1-2711, AFOSR
under grant FA9550-14-1-0163, and NAVSEA/NEEC
under grants 3003279297 and N00174-16-C-0018.
Any opinions, findings, and conclusions or
recommendations expressed in this work are
those of the authors and do not necessarily
reflect the views of ONR, AFOSR, and NAVSEA.

http://popcornlinux.org/

44

Questions?

